
 

Name of the Course: Linear Algebra  

Syllabus:   

Unit I  

Symmetric and Skew symmetric matrices -  Hermitian and Skew Hermitian Matrices 

– Orthogonal and Unitary matrices -  Rank of matrix -  Eigen values and Eigen 

vectors of Linear operators – Cayley Hamilton theorem -  Solutions of Homogeneous 

linear equations – Solutions of non homogenuous linear equations.   

Section 1.1   Symmetric and Skew symmetric matrices 

Definition 1.1.1:  Symmetric Matrix  

A  Matrix A is symmetric if and only if  the condition 𝐴 =  𝐴𝑇 . A is symmetric if and 

only if  𝑎𝑖𝑗 =   𝑎𝑗𝑖.    where 𝑎𝑖𝑗  represents an element  in the ith and jth column of the  

matrix A.  

Example:   𝐴 =  (
1 4 2
4 5 6
2 6 3

)         𝐴𝑇 =  (
1 4 2
4 5 6
2 6 3

) 

Definition 1.1.2 :  Skew -  Symmetric Matrix  

A  Matrix A is skew - symmetric if and only if  the condition 𝐴 =  −𝐴𝑇 . A is skew - 

symmetric if and only if  𝑎𝑖𝑗 =  − 𝑎𝑗𝑖.    where 𝑎𝑖𝑗  represents an element  in the ith and 

jth column of the  matrix A.  

Example:   𝐴 =  (
0 4 5

−4 0 6
−5 −6 0

)         𝐴𝑇 =   (
0 −4 −5
4 0 −6
5 6 0

) 

Theorem 1.1.3:  

If  a matrix  A is symmetric and invertible , then  𝐴−1 is also symmetric.  

Proof:   It is given that   A is symmetric. Therefore, by definition, we get   𝐴 =  𝐴𝑇 

Since A is invertible  𝐴−1 exists and we know that (𝐴−1)𝑇 =  (𝐴𝑇)−1 



Now,   𝐴 =  𝐴𝑇  ⟹  𝐴−1 =  (𝐴𝑇)−1 =  (𝐴−1)𝑇 .   Therefore  𝐴−1 is symmetric.  

Example 1.1.4:   The product of the two symmetric matrices need not be symmetric. 

Proof.   Let  𝐴 =  (
1 4
4 2

)  and  𝐵 =  (
1 1
1 5

) . We can easily verify that   𝐴 =  𝐴𝑇 and 

𝐵 =  𝐵𝑇.  

Now we compute  𝐴𝐵 =  (
1 4
4 2

) (
1 1
1 5

)  =  (
1 + 4 1 + 20
4 + 2 4 + 10

) =  (
5 21
6 14

)   

    (𝐴𝐵)𝑇 =  (
5 6

21 14
) . Since  𝐴𝐵 ≠ (𝐴𝐵)𝑇  . The product matrix  𝐴𝐵 is not symmetric.  

Theorem 1.1.5:  

If A is any symmetric matrix prove that  𝐴 +  𝐴𝑇 is symmetric and  𝐴 −  𝐴𝑇 is skew 

symmetric.  

Proof: It is given that  𝐴 is symmetric matrix. Therefore by definition we get,  𝐴 =

 𝐴𝑇 .  

  Now  (𝐴 + 𝐴𝑇)𝑇 =  𝐴𝑇 + ( 𝐴𝑇)𝑇  =  𝐴𝑇 +  𝐴 = 𝐴 + 𝐴𝑇.   ∴ 𝐴 + 𝐴𝑇 is  symmetric 

matrix. 

Similarly,  (𝐴 −  𝐴𝑇)𝑇 =   𝐴𝑇 − ( 𝐴𝑇)𝑇  =  𝐴𝑇 −  𝐴 = − (𝐴 − 𝐴𝑇).  ∴ 𝐴 − 𝐴𝑇  is  skew 

symmetric matrix. Hence the proof.  

Theorem 1.1.6 

 (i)  Show that Any square matrix can be explained as the sum of the symmetric and 

skew symmetric matrix. (ii) Also prove that this representation is unique.  

Proof:  

 Let  𝐴 =  
𝐴+𝐴𝑇

2
 +

𝐴−𝐴𝑇

2
   

    𝐴 + 𝐴𝑇 is symmetric implies that  
𝐴+𝐴𝑇

2
  is also symmetric. Similarly,   𝐴 − 𝐴𝑇 is 

skew symmetric implies that  
𝐴−𝐴𝑇

2
  is also skew symmetric. Therefore any square 

matrix can be explained as the sum of the symmetric and skew symmetric matrix. 

(ii)  we have to  prove that  this representation is unique.   If  𝐴 =  𝐴1 + 𝐴2  and  𝐵 =

𝐵1  +  𝐵2  where  𝐴1 and 𝐵1 are symmetric matrices and  𝐴2 and 𝐵2 are skew 

symmetric matrices. We have to show that  𝐴 = 𝐵.   i.e  𝐴1 + 𝐴2 =  𝐵1  +  𝐵2 



 i.e  𝐴1 − 𝐵1  =  𝐵2 − 𝐴2   ⟹   LHS is symmetric matrix  and RHS is Skew symmetric. 

This is possible only when  𝐴1 − 𝐵1 = 0 and  𝐵2 − 𝐴2 = 0.   i.e  𝐴1 = 𝐵1 and  𝐵2 =  𝐴2. 

Hence, this representation is unique. 

Problem 1.1.7:  

Express the matrix 𝐴 =  (
1 2 1
3 0 1

−1 2 0
)  as the sum of the symmetric and skew 

symmetric matrix.   

Solution:  

We know that   𝐴 =  
𝐴+𝐴𝑇

2
 +

𝐴−𝐴𝑇

2
 

𝐴 + 𝐴𝑇

2
=  

1

2
 [ (

1 2 1
3 0 1

−1 2 0
) +   (

1 3 −1
2 0 2
1 1 0

)] =  
1

2
  (

2 5 0
5 0 3
0 3 0

) 

𝐴 − 𝐴𝑇

2
=  

1

2
 [ (

1 2 1
3 0 1

−1 2 0
) −   (

1 3 −1
2 0 2
1 1 0

)] =  
1

2
  (

0 −1 2
1 0 −1

−2 1 0
) 

𝐴 + 𝐴𝑇

2
+

𝐴 − 𝐴𝑇

2
=  

1

2
  (

2 5 0
5 0 3
0 3 0

) +
1

2
  (

0 −1 2
1 0 −1

−2 1 0
)   

 

  =  
1

2
 [(

2 5 0
5 0 3
0 3 0

) +  (
0 −1 2
1 0 −1

−2 1 0
)]    

 

 =  
1

2
 (

2 4 2
6 0 2

−2 4 0
)  

 = (
1 2 1
3 0 1

−1 2 0
)  

Hence the matrix A  can be expressed as the  sum of the symmetric and skew 

symmetric matrix.   

  i.e  𝐴 =    (
1 5/2 0

5/2 0 3/2
0 3/2 0

) +  (
0 −1/2 1

1/2 0 −1/2
−1 1/2 0

)  

 



Problem 1.1.8:  

Express the matrix 𝐴 =  (
1 1 1
2 2 3
1 4 9

)  as the sum of the symmetric and skew 

symmetric matrix.   

Solution:  

We know that   𝐴 =  
𝐴+𝐴𝑇

2
 +

𝐴−𝐴𝑇

2
 

𝐴 + 𝐴𝑇

2
=  

1

2
 [ (

1 1 1
2 2 3
1 4 9

) +   (
1 2 1
1 2 4
1 3 9

)] =  
1

2
  (

2 3 2
3 4 7
2 7 18

) 

𝐴 − 𝐴𝑇

2
=  

1

2
 [ (

1 1 1
2 2 3
1 4 9

) −   (
1 2 1
1 2 4
1 3 9

)] =  
1

2
  (

0 −1 2
1 0 −1
0 1 0

) 

𝐴 + 𝐴𝑇

2
+

𝐴 − 𝐴𝑇

2
=  

1

2
  (

2 3 2
3 4 7
2 7 18

) +
1

2
  (

0 −1 2
1 0 −1
0 1 0

)   

 

  =  
1

2
 [(

2 3 2
3 4 7
2 7 18

) +  (
0 −1 2
1 0 −1
0 1 0

)]    

 

                                 =  
1

2
 (

2 2 4
4 4 6
2 8 18

)  

                     =  (
1 1 1
2 2 3
1 4 9

) 

Hence the matrix A  can be expressed as the  sum of the symmetric and skew 

symmetric matrix.   

  i.e  𝐴 =      (
1 3/2 1

3/2 2 7/2
1 7/2 9

) + (
0 −1/2 1

1/2 0 −1/2
0 1/2 0

)  

Theorem 1.1.9 

If  𝐴 and 𝐵 are skew symmetric matrices then prove that  (i)  A+B is  skew symmetric 

matrix  (ii)  𝐴2𝑛  is symmetric.  (iii)  𝐴2𝑛+1  is skew symmetric matrix where 𝑛 ∈ 𝑍.  



Proof:  It is given that  A and B are skew symmetric matrices. Therefore  𝐴 =  −𝐴𝑇 

and 𝐵 =  −𝐵𝑇.  Now we rove 

(i)     𝐴 + 𝐵 =  −𝐴𝑇 +  (−𝐵𝑇) =  −(𝐴𝑇 + 𝐵𝑇  )  =  −(𝐴 + 𝐵)𝑇. Therefore  𝐴 + 𝐵 is skew 

symmetric matrix.  

(ii)   Consider  𝐴2𝑛 =  (−𝐴𝑇)2𝑛          ∵   𝐴  is skew symmetric matrix.  

                                 =  (−1)2𝑛  (𝐴𝑇)2𝑛 = (𝐴2𝑛)𝑇   

Which implies that  𝐴2𝑛 is symmetric matrix.  

(iii)   Consider  𝐴2𝑛+1 =  (−𝐴𝑇)2𝑛+1      ∵   𝐴  is skew symmetric matrix.  

                                     =  (−1)2𝑛+1 (𝐴𝑇)2𝑛+1 = −(𝐴2𝑛+1)𝑇   

Which implies that  𝐴2𝑛+1 is skew symmetric matrix.  

Theorem 1.1.10 

If   𝐴 and 𝐵 are invertible, symmetric and commuting matrices then show the 

following  (i)  𝐴−1𝐵 is  symmetric  (ii)  𝐴𝐵−1  is symmetric   (iii) 𝐴−1𝐵−1 is  symmetric   

Proof:  It is given that   𝐴 and 𝐵 are symmetric,  invertible and commuting matrices.  

Therefore from the given conditions we have   

    𝐴 =  𝐴𝑇 and  𝐵 =  𝐵𝑇   ....... (1)   𝐴−1 , 𝐵−1 exists  ...... (2)    𝐴𝐵 = 𝐵𝐴  .... (3) holds.  

(i) In (3) Pre multiply by 𝐴−1  and Post multiply by 𝐵−1  we gat,  

   𝐴−1𝐴𝐵 𝐵−1  = 𝐴−1𝐵𝐴 𝐵−1  

 𝐼 = 𝐴−1𝐵𝐴 𝐵−1 

 ⟹  (𝐴−1𝐵)
−1

=  𝐴 𝐵−1
  

 ⟹  𝐵−1  (𝐴−1)
−1

=  𝐴 𝐵−1
 

 ⟹  𝐵−1 𝐴 =  𝐴 𝐵−1   ...... (4) 

            Similarly, In (3) Pre multiply by 𝐵−1  and Post multiply by 𝐴−1  we gat,  

   𝐵−1𝐴𝐵𝐴−1   = 𝐵−1𝐵𝐴𝐴−1   

 𝐵−1𝐴𝐵𝐴−1   = 𝐼 

 ⟹ 𝐵𝐴−1
=  (𝐵−1𝐴)

−1

   



 ⟹   𝐵𝐴−1
=   𝐴−1𝐵   ...... (5) 

(i)   (𝐴−1𝐵)𝑇 = (𝐵𝐴−1)𝑇           ∵   𝐹𝑟𝑜𝑚 equation (5) 

    = 𝐵𝑇(𝐴−1)𝑇  

  = 𝐵𝑇(𝐴𝑇)−1     

            = 𝐵 (𝐴)−1           ∵   𝐹𝑟𝑜𝑚 equation (1) 

 = 𝐵𝐴−1 

             = 𝐴−1𝐵     ∵   𝐹𝑟𝑜𝑚 equation (5) 

 Hence  𝐴−1𝐵 is symmetric.  

(ii)   (𝐴𝐵−1  )𝑇 = (𝐵−1 𝐴)𝑇           ∵   𝐹𝑟𝑜𝑚 equation (4) 

    = 𝐴𝑇(𝐵−1)𝑇  

  = 𝐴𝑇(𝐵𝑇)−1     

            = 𝐴 (𝐵)−1           ∵   𝐹𝑟𝑜𝑚 equation (1) 

 = 𝐴𝐵−1            

 Hence  𝐴𝐵−1  is symmetric. 

(i)   (𝐴−1𝐵−1  )𝑇 = (𝐵−1 )𝑇  (𝐴−1 )𝑇          ∵   𝐹𝑟𝑜𝑚 equation (4) 

    = (𝐵𝑇 )−1 (𝐴𝑇 )−1 

  =    𝐵−1𝐴−1         ∵   𝐹𝑟𝑜𝑚 equation (1) 

            =  (𝐴𝐵)−1            

 = (𝐵𝐴)−1               ∵   𝐹𝑟𝑜𝑚 equation (3) 

  =  𝐴−1𝐵−1   

 Hence  𝐴−1𝐵−1  is symmetric. 

 

 

 

 

 


